CHARACTERIZATION ON SILICA FROM WASTE SUGARCANE BAGASSE FOR MEMBRANE FABRICATION

Hamizah Mokhtara, Ramlah M. T.a, Aida Isma M. I.b, Nabilah Huda A. H.a, Noor Sa'adah A. H.a and Wan Suriatty M.a

aInstitute for Infrastructure Engineering and Sustainable Management (IIESM), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
bFaculty of Engineering and the Built Environment, SEGI University, 47810 Selangor, Malaysia

*Corresponding author ami_872001@yahoo.com.my

Abstract

The used of additive enhance the surface of the membrane layers and can be choose from various material. Examples of commonly used additive in membrane are: Polyethylene glycol, silica oxide, cellulose acetate and Polyvinylpyrrolidone. Silica oxide was proven have ability to minimize the fouling problem hence increase hydrophobic properties of membrane. Silica also can be extracted from rice husk ash, sugarcane bagasse, sorghum vulgare seed and kenaf by precipitation method, biodigestion and sol-gel process. Silica extraction from sugarcane bagasse was chosen as the organic additive for membrane formation. In order to investigate the suitability of the material, several characterization test have been conducted. There are thermal, microscopic and spectroscopic analyses. Thermal gravimetric analysis was performed on sugarcane bagasse to determine the amount of silica that can be extracted from it. Results of TGA on sugarcane bagasse show that the peak temperature at 315.70°C are defined as crystalline melt. After the melt transition, the baseline tilts to a slightly lower position than the pre-melt baseline. The post-melt baseline changes slightly as the sample begins decomposition while TGA extrapolated onset temperature of 241.56 °C as this sample decomposes. The analysis of microscopic shows that the addition of silica from sugarcane bagasse changed the surface structure of the membrane especially at top layer and sub layer. Sugarcane bagasse show bands for carboxylate (COO-) and hydroxyl (OH) groups. The availability of negatively charged groups of the surface of sugarcane bagasse shows potential to be used as additive in membrane fabrication.

Keywords: membrane; microscopic; silica; sugarcane bagasse; thermal

1.0 INTRODUCTION

Sugarcane was harvested from one of the plantation in Malaysia. Sugarcane bagasse is the fiber source that remains after sugarcane are crush to extract their juice. Sugarcane bagasse were considered as one of the most crucial commercially fiber sources and proven to be a better option than wood fibers in producing textiles, paper, pressed wood materials and few more products \cite{1}. Silica that can be extracted from sugarcane was found to be suitable as the additive for membrane fabrication. In 19 century, silica was found in the plant and was used to produce a constant material. Since then, silica is generally accepted as polymer compound that are sustainable. The use of sugarcane bagasse helps the industries in term of environmental ecosystem \cite{1}. Sugarcane bagasse can replace the usage of wood
In paper industry and also helping in reducing the damage of tropical rainforest.

Studies on research done related to membrane technology explains that membranes were fabricated using additive from various materials but none of it using silica from sugarcane bagasse. Idris, Kee, & Ahmed, (2008) [2] used MSG as additive for membrane formulation reported that the suitable increment of monosodium glutamates in dope solution of dialysis membrane has improved its performance. Bowen, Doneva, & Yin, (2002) [3] find that Sulfonated Poly(ether ether ketone) (SPEEK), also give effective function in membrane surface condition, however, Kim & Lee, (1998) [4] who found that the increase of Polyethylene glycol (PEG) ratio will result in casting solution becomes thermodynamically less stable.

Membranes are proven to have ability to treat wastewater effectively; however, there is weakness on membrane where its hydrophobic absorption may cause fouling [5]. Therefore, this research produced new membrane formulation and fabrication using new material that is sustainable and low cost. Percentage of the silica extracting from sugarcane bagasse was formulated to fabricate the membrane. This study also investigate the characteristics of the silica from waste sugarcane bagasse such as thermal, microscopic and spectroscopic analyses.

2.0 EXPERIMENTAL

2.1 Materials

Material use in this study included sugarcane bagasse, N, N-Dimethylacetamide (DMAC), Polysulfone (PSF), Polyvinylpyrrolidone (PVP), Sodium chloride (NaCl), Sodium Hydroxide (NaOH), Hydrochloric Acid (HCl), and Sulfuric Acid (H2SO4).

2.2 Extraction of Silica

Sugarcane bagasse samples were undergo refluxing process with HCl for 4 h and washed frequently using deionised water to make it acid free. After that the sample was dissolved in NaOH by stirring continuously for 10 h on a magnetic stirrer [6]. Then concentrated H2SO4 was added to adjust pH in the range of 7.5-8.5. The precipitated silica was washed repeatedly with warm deionised water until the filtrate became completely alkaline. The deionised water was used time after time for washing process. The silica was dried at 50 ℃ for 48 h in the oven [6].

2.3 Membrane Fabrication

After that, sugarcane bagasse silica was formulated with Pfs, PVP and DMAC to fabricate membrane. Membrane formation was started with the filtration process. Filtration process is a process where Psf was added into DMAC and stirred continuously until the polymer is dissolved with the solvent, PVP and silica were added and the mixture was stirred with a control temperature of 60 ℃ until homogeneous. The percentage of silica added vary from 1% to 6%. The mixture of those materials is called dope of membrane. The dope was left for 24 hour to ensure the air that trapped in that mixture during the stirring process bubble out. The pneumatically controlled flat sheet membrane casting unit (Model: TR31-A) was used to fabricate the membrane, wet-dry immersed membrane process and also for flux permeate and salt rejection tests.

2.4 Characterization

2.4.1 Thermo gravimetric analysis (TGA)

The sugarcane bagasse was tested for thermal analysis of Nano-SciTech Centre, Universiti Teknologi Mara (UiTM) to estimate the amount of sugarcane bagasse needed for extracting certain amount of silica. Thermal Gravimetric Analyzer (Pyris Diamond TGA, Perkin-Elmer) was used to characterize the thermal stability of the sugarcane bagasse samples. Approximately 10 mg of each sample was heated from 30 ℃ to 750 ℃ at a heating rate of 10 ℃/min. All of the measurements were performed under a nitrogen atmosphere with a gas flow of 50 ml/min in order to prevent any thermoxidative degradation.

2.4.2 Microscopic analyses

Field Emission scanning electron microscopy (FSEM) photographs of silica surfaces from sugarcane bagasse were captured. In this case, the samples were coated with gold using the sputtering technique.

2.4.3 Fourier Transforms Infrared (FTIR) Spectroscopy

The FTIR spectra of the sugarcane silica from sugarcane bagasse were recorded on an instrument (Shimadzu FTIR 8400) in the range of 400-4000 cm⁻¹ with a resolution of 4 cm⁻¹.

3.0 RESULTS AND DISCUSSION

3.1 Membrane Efficiencies

Membranes were tested on permeate flux using pure water to verify the characteristic of the membrane. The effect of silica as an additive on the pure water flux and salt rejection performance is illustrated in Figure 1. From the figure, the flux increases when the silica content increases up to 3%. The pure water flux of 1% silica is 25.68 Lm⁻²h⁻¹; 2% silica is 27.60 Lm⁻²h⁻¹ and 3% silica is 39.45 Lm⁻²h⁻¹. This increasing behaviour might due to the silica 5% is more hydrophilicity compare to the other percentages of
silica. However, the pure water flux decreases to 38.28 Lm⁻²h⁻¹, 35.47 Lm⁻²h⁻¹, and 35.31 Lm⁻²h⁻¹ when the silica increases to 4%, 5% and 6% respectively. Similar trend reported by Ahmad et al. (2007) shows the 2% of silica was the optimum for water permeability [7]. This is due to the interactions between contaminants and membrane surface were reduced by silica particles of the membrane surface. At 3% of silica, hydrophilicity of the membrane increases and consequently it attracts water molecules into the composite membrane. Moreover, hydrophilicity properties may also facilitates water penetration through the membrane thus enhances the flux. Nevertheless, higher concentration of silica will cause the pure water flux to decrease immediately. As the consequence, the hydrophilicity of membrane also decreases where the pure water flux suddenly drops at the 4% of silica. At 5% silica, the flux rate keeps on dropping and remains constant at 6% of silica. Thus, based on this trend, the optimum flux rate can be considered at membrane which contains 3% of silica.

![Figure 1 Pure water flux for different percentage of silica.](image)

Figure 2 describes the effect of different percentage of silica in terms of percentage of salt rejection. The results indicated that at the first 3% of silica, the salt rejection were slightly similar approximately 75.33% rejection. Then, the salt rejection shows gradually decreased from 75.35% to 71.18% with addition of 4% to 6% silica. According to the results, the 3% silica show the highest NaCl rejection of 75.35% due to good hydrophilic properties. The high hydrophilically membrane may reduce interaction between hydrophobic contaminants and the membrane surface; hence, the rejection properties were improved effectively [8]. This is clearly show by the rejection properties when silica is added as additive in membrane fabrication. However, with more addition of silica result to low NaCl rejection. This may be due to crystalline effect of the excess silica that has low compatibility when mixed with polymer [9]. Therefore, the small particles can be a small defect and this surely will affect the rejection value.

![Figure 2 Salt rejection for different percentage of silica.](image)

3.2 TGA Analyses

In this research, TGA was used to analyse the thermal behaviour of sugarcane bagasse. TGA result of sugarcane bagasse is as shown in Figure 3. Base on the TGA curves, indicates that the sugarcane bagasse have about 599.93°C maximum heating temperature but the inflection point for the sample was 315.70°C with residue of 6.0056 mg. Initial weight of sample was 10 mg, and the weight loss was about 39.944%. Results of TGA in Figure 3, show that the thermal curve is displayed from left to right which is in the descending curve indicates that weight loss of the sugarcane bagasse silica occurred. Based on the curve, several diffusion controlled reactions were occurs and the silica was also observe to be melting during the TGA process. It is quite interesting to note that, the inflection point for bagasse at 315°C have similar trend with study of Arup Mandal and Debabrata Chakraborty (2011) at temperature 311°C. They also indicate that the untreated bagasse were undergo degradation at temperature of 273°C and the rate of degradation reaching its peak at 363°C [1].
3.2 Microscopic Analyses

The image of silica from waste sugarcane bagasse analyses using FESEM was shown in Figure 4. The surface of silica showed rough surface which value to the high surface area lead to easy reaction with solution. EDX profile of silica from sugarcane bagasse contained the elements of Silica, Oxygen, Carbon and Magnesium, Potassium and Gold as shown in Figure 5. Both Si and O peaks resemble as percentage of silica which is 20.28%. The dominant signals originate from gold (Au) (65.0%) is due to gold coating.

3.3 Fourier Transforms Infrared (FTIR) Spectroscopy

The surface functional group of waste sugarcane bagasse were determined. Table 1 shows the bond and functional groups that associated with certain specific bands (cm⁻¹) for silica. The bands presence in Figure 6 was range from 404-3929 cm⁻¹. Sugarcane bagasse show bands for carboxylate [COO⁻] and hydroxyl (OH⁻) groups. The availability of negatively charged groups at the surface of sugarcane bagasse shows potential to be used as additive in membrane fabrication. Addition of this additive will improve hydrophilicity of the membrane pores. The band at 3221-3500 cm⁻¹ are assigned to O-H stretching associated with alcohol group. The bands 2100-2245 cm⁻¹ represent C=O stretch in aldehydes group. The peak of 1475 cm⁻¹ indicate as C-H bend in alkanes. The bands from 1050 cm⁻¹ to 1250 cm⁻¹ represent carboxylic acids group. The bands of 800-891 cm⁻¹ specify for C-N stretching associated with aliphatic amines. The appearance peak at 515-690 cm⁻¹ is a characteristic of C-Br in alkyl halides. Previous study by Uvia et al., 2011, indicated peak 1235 cm⁻¹ as the carboxylic acids in plane OH bending and C-O stretching [10].
Acknowledgement

The author is grateful to the Institute for Infrastructure Engineering and Sustainable Management (IESM) and Ministry of Higher Education for providing the scholarship to the author. The authors would like to express the greatest appreciation to the IESM University and the Faculty of Civil Engineering, of Universiti Teknologi MARA for providing necessary facilities for this research.

References

4.0 CONCLUSION

In conclusion, the thermal, microscopic and spectroscopic analyses on silica from sugarcane bagasse were successfully investigated. The shape of the TGA curve indicates that from 10 mg of sample weight, it decreased to about 6.0056 mg (39.944% of residue) which have right limit temperature of 539.93°C and inflection point of 315.70°C. Microscopic analyses using FESEM shows that sugarcane bagasse contained approximately 20.28% silica and oxygen. The Fourier transform infrared spectrometric analyses indicate that the addition of sugarcane bagasse will improve hydrophilicity of the membrane pores due to availability of negatively charged groups such as carboxylate (COO-) and hydroxyl (OH-) groups. From the results and analyses, the membrane performance with addition of 3% silica give the best salt rejection of 75.35% and 42.65 L/m² h·m²·bar water flux.
Salam shna,

Sorry tengah drive tadi.

Ini email notification paper characterisation accepted for envicet 15 (conference).
All accepted papers will be published in special journal teknologi (indexed by elsevier: scopus).
Jurnal teknologi (sains & teknologi) adalah di dalam rank Q3.

Aida submit tu adalah setelah di published dlm jurnal teknologi ok.

Thanks

From: aida.isma <aidaisma@hotmail.com>
Sent: Monday, November 23, 2015 1:19 PM
To: aidaisma@segi.edu.my

Sent from my iPhone

Begin forwarded message:

From: Hamizah Mokhtar <hmhamizah4@gmail.com>
Date: 19 November 2015 9:35:39 am MYT
To: aidaisma@hotmail.com

--------- Forwarded message ---------
From: <info@envicet.com>
Date: 7 Nov 2015 3:30 am
Subject: [ENVICET'15] Official Acceptance Notification - Your paper #1570230182 ('Characterization On Silica From Waste Sugarcane Bagasse For Membrane Fabrication')
To: "Hamizah Mokhtar" <hmhamizah4@gmail.com>, "Noor Sa'adah Abdul Hamid" <saadahhamid.pg@gmail.com>, "Wan Mazlan" <wansuriatty@sunway.edu.my>
Cc:

/= =
OFFICIAL ACCEPTANCE NOTIFICATION
+*%$%*+ ENVICET'15 +*%$%*
/= =

Dear Hamizah Mokhtar, Aida Isma M.I., Noor Sa'adah Abdul Hamid and Wan Mazlan:

This is ENVICET'15 official letter for notification of acceptance.

Congratulation!!

Based on the recommendations of the reviewers and the Program Committee, I am very pleased to inform you that your paper:

1570230182 - Characterization On Silica From Waste Sugarcane Bagasse For Membrane Fabrication
Link to your paper - http://edas.info/showPaper.php?m=1570230182

-+*%$%*+-+*%$%*+-+*%$-+*%$%*+
STATUS
ACCEPTED with MINOR REVISIONS
-+*%$%*+-+*%$%*+-+*%$-+*%$%*+

You are cordially invited to present the paper at 2015 Environmental and Civil Engineering Technology International Conference (ENVICET'15).

It is a prestigious international academic conference organized by Malaysia Technical Scientist Association (MALTESAS). This conference is also supported by Universiti Malaysia Perlis (UNIMAP). The ENVICET'15 will provide a platform where researchers, professionals, academicians and industries to share and generate a forum of recent development, new ideas and new discoveries. The
ENVICET'15 will be held in Krabi, Thailand from on 1 – 3 December 2015.

Hotel Venue for Conference:
Deevana Plaza Krabi – Aonang
186 Moo 3, Ao Nang Soi 8, Ao Nang Beach, Muang, Krabi 81180 Thailand

All ACCEPTED and REGISTERED papers will be published in the Special Issues in Jurnal Teknologi (Indexed by Elsevier: SCOPUS)

Please register as soon as possible and then submit a new corrected version to us before:

- 20th November 2015.

What To Do:

1. Please proceed with your institution/company approval by printing this email of acceptance of notification (it can be used for your application)

2. Proceed with payment via:
 - EDAS: http://edas.info/r20167
 - Or Paypal at www.maltesas.org/payment
 - Or Bank Transfer to Event Management (Email us for details). Email can be found at conference website.

3. Add ALL AUTHORS at Author Section in your EDAS ID (Must be the same as your paper)

4. Add a Presenter Name at Presenter Column. Click at the Drop Down Menu and choose any names. Then, click at the Add Another Presenter button.

5. For Conference require copyright (Do download copyright form at the conference website under Submit tab), please download, fill in and sign, scan and then upload at the Copyright Column. If you do not find anything that related to the copyright. Then you may skipped copyright form upload/record.

6. Prepare a Final Manuscript/Camera Ready based on Submit tab at the conference website
 - Maximum Page with Normal Fee Allowed - 6 Pages
- Extra Page = USD 100 per page

Example (1 Paper)

6 Pages article = Normal Fee
7 Pages article = Normal Fee + USD 100
8 Pages article = Normal Fee + USD 200
9 Pages article = Normal Fee + USD 300
10 Pages article = Normal Fee + USD 400
N Pages article = Normal Fee + (USD 100*(N-5))

7. Upload Final Manuscript (This will be automatically enabled after you have made a payment VIA EDAS ONLY. Other payment method must inform us at conference email.

8. Please check with any plagiarism detection software and make sure to have only at most 25% similarity score. Any paper with more than 25% similarity score will not be considered in the database/publication.

===
Other Information:
===

1. This notification email serves as our formal acceptance of your paper as well as an invitation to present your work at ENVICET'15 with the following rules:
 - All papers must be reformatted based on the Submit tab at the conference website.
 - All must meet the requirement set up by the conference organizer from time to time.
 - Failure to meet the deadline and format given by organizer will not guaranteed your paper to be published in stated publication (journal/proceedings/book chapters)

2. Please read comments from reviewers and make the necessary corrections where appropriate as suggested in the final submission. The reviewers' comments are included at the end of this notification email or can also be found at http://edas.info/showPaper.php?m=1570230182.

3. The acceptance of your paper is made with the understanding that at least one author will PRE-REGISTER with the necessary registration fee and attend the Conference to present the paper. Without payment your camera-ready paper
will not be allowed to be uploaded.

4. Please be advised that in-case more than one author would like to attend, EACH author is required to pay the conference fee.

5. If your credit card does not work or produce an error, please call your bank card provider first as some bank prevented making payment in USD or to United States of America.

6. I would like to take this opportunity to thank you for choosing ENVICET’15 to present your research results and looking forward to seeing you in conference location.

7. Upon payment has been made (Payment Complete). Automatically the author(s) of corresponding paper will accepted and agreed to the Registration Terms and Conditions:

------- Registration Terms and Conditions -----

A. Each paper will only cater for One Author Registration. Other authors must pay as Participant Without Papers if they want to come and access the conference session.
B. No-Show (Did not come to the conference) Participant/Presenter cannot ask for any materials to be sent to the Author UNLESS with a certain fee (Email Conference Organizer). Minimum is USD50 (Malaysia)
C. Each paper will only get One Certificate. Extra certificate can be obtained through a certain fee.
D. Authors agreed that the publication of the journals/papers/book chapters will takes 4 – 8 months from the conference date.
E. Payment will not be refunded
F. Access to the Publisher database is not provided by Organizer. Author must use their institution subscription for the access. Author has no right to ask Organizer for the copy.
G. Hardcopy version is not provided

All terms and conditions will be applied automatically once payment has been made.

Regards,
Secretariat of ENVICET
Program Chair
Reviews

====== Review 1 ======

> *** Strengths/Weakness: What are the major reasons to accept/reject the paper? [Be brief.]

the thermal, microscopic and spectroscopic analyses on silica from sugarcane bagasse were successfully investigated. The shape of the TGA curve indicates that from 10 mg of sample weight, it decreased to about 6.0056 mg (39.944% of residue) which have right limit temperature of 539.93 ºC and inflected point of 315.70ºC

> *** Contribution/s & Detailed comments: What are the major issues addressed in the paper? Do you consider them important? Comment on the degree of novelty, creativity and technical depth in the paper. Please provide detailed comments that will be helpful to the TPC for assessing the paper, as well as feedback to the authors.

the Fourier transform infrared spectrometric analyses indicate that the addition of sugarcane bagasse will improve hydrophilicity of the membrane pores due to availability of negatively charged groups such as carboxylate (COO-) and hydroxyl (OH-) groups.

> *** Originality: New or Novel contribution
Accept (8)

> *** Significance of Topic: Relating to knowledge contribution
Accept (8)

> *** Presentation: Clarity and Organisation of Content
Accept (8)

====== Review 2 ======

Strength:
1. This paper represents research on a topic which is current and applicable to a wide range of audience
2. Detailed discussion was given

Weaknesses
1. Try to highlight what are the practical barriers faced in implementing the strategies?
2. some of the references are out of date.

This review paper while not novel in nature, still addresses an important issue and contributes to the body of knowledge regarding the characterization on silica from waste sugarcane bagasse for membrane fabrication.

The topic presented is relevant to the conference and can contribute to a worthwhile discussion and feedback session from other delegates and participants.

Originality: New or Novel contribution
Accept (8)

Significance of Topic: Relating to knowledge contribution
Accept (8)

Presentation: Clarity and Organisation of Content
Weak Accept (6)
good paper and clear presentation

> *** Contribution/s & Detailed comments: What are the major issues addressed in the paper? Do you consider them important? Comment on the degree of novelty, creativity and technical depth in the paper. Please provide detailed comments that will be helpful to the TPC for assessing the paper, as well as feedback to the authors.

this research produced
new membrane formulation and fabrication using
new material that is sustainable and low cost.
Percentage of the silica extracting from sugarcane bagasse was formulate to fabricate the membrane.
This study also investigate the characteristics of the silica from waste sugarcane bagasse such as thermal, microscopic and spectroscopic analyses.

clear presentation and good technical paper

> *** Originality: New or Novel contribution
Accept (8)

> *** Significance of Topic: Relating to knowledge contribution
Accept (8)

> *** Presentation: Clarity and Organisation of Content
Accept (8)